پیش بینی تبخیر با استفاده از شبکه عصبی مصنوعی و سیگنا لهای اقلیمی در حوضه دز
نویسندگان
چکیده مقاله:
تبخیر از پدیده های مهم چرخه آبشناختی است و تخمین و پیش بینی آن در مدیریت و برنامه ریزی اصولی آب ضروری می باشد، به همین خاطر به پیش بینی این پدیده در حوضه دز که بخش مهمی از آب مصرفی کشور را تأ مین می کند پرداخته شده است. در شبیه سازی تبخیر و بررسی امکان پیش بینی آن ازمدل شبکه عصبی مصنوعی با بهره گیری از نرم افزار نروسلوشن استفاده گردیده که آمار مربوط به تبخیر در 4 ایستگاه همدید با حداقل 19 سال آمار ماهانه و داده های مربوط به مهمترین شاخص های آب و هوایی، مورد تجزیه و تحلیل قرار گرفته است. نتایج پژوهش نشان می دهد که مهمترین شاخص های مرتبط با تبخیر در حوضه شامل نینا 3، اس. دبلیومونسون، ام.ای.آی، نینا 1، نینا 4 و نینا 3/4 میباشد. مقایسه داده های مشاهده ای تبخیر و خروجی شبکه عصبی مصنوعی همبستگی بالا بین این داده ها را نشان می دهد، به طوریکه میزان این همبستگی در ایستگاه خرم آباد 79 درصد، دزفول 94 درصد، کوهرنگ 80 درصد و اراک 72 درصد است. با توجه به خروجی شبکه عصبی و داده های مربوط به شاخص های آب و هوایی می توان با دقت بالای 98 درصد به پیش بینی تبخیر درحوضه اقدام نمود
منابع مشابه
برآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی
بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...
متن کاملپیش بینی تبخیر از سطح ایستابی کم عمق با استفاده از شبیه های وایازی و شبکه ی عصبی مصنوعی
رابطه ی بین عمق سطح ایستابی و تبخیر از سطح خاک در اغلب مناطق خشک و نیمه خشک بسیار مهم است. در این مناطق به علت آبیاری بیش از حد نیاز، اغلب سطح ایستابی نزدیک زمین است که باعث شوری خاک میشود. در این مطالعه از یک شبیه فیزیکی سطح ایستابی برای تعیین شدت تبخیر در خاکهای لوم شنی، لومی و لوم رسی در گلخانه و برای سه سطح ایستابی 40، 60 و 80 سانتی متری استفاده شده است. تبخیر از سطح خاک، تبخیر از سطح آزاد...
متن کاملکاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی
برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار میرود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول میرسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از دادههای هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملپیش بینی تبخیر-تعرق مرجع با استفاده از شبکه های عصبی مصنوعی rbf ،mlp svm
تخمین تبخیر-تعرق گیاه مرجع یکی از مهم ترین مؤلفه ها در بهینه سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش بینی تبخیر-تعرق مرجع روزانه و هفتگی می تواند در پیش بینی نیاز آبی گیاهان و برنامه ریزی کوتاه مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی mlp(پرسپترون چندلایه)، rbf (شبکه تابع پایه ای شعاعی)، svm (ماشین بردار پشتیبان) در پیش بینی تبخیر-تعرق م...
متن کاملپیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی
پیشبینی پدیدههای اقتصادی ساختاری فراهم میکند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیمهای درست یاری دهد. هدف اصلی این مطالعه پیشبینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روشهای سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده میشود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 30 شماره 2
صفحات 261- 274
تاریخ انتشار 2015-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023